
Hintersteiner, Jason D. (1999) “A Fractal Representation for Systems.” Proceedings of the 1999
International CIRP Design Seminar, Enschede, the Netherlands. March 24-26, 1999. Page 1 (of 10)

A Fractal Representation for Systems

Jason D. Hintersteiner
Axiomatic Design Group

Massachusetts Institute of Technology
77 Massachusetts Avenue, #31-261

Cambridge, MA 02139
jdhinter@alum.mit.edu

Abstract: To facilitate the design of evolving systems, tools are needed to capture all
performance issues and evaluate design ideas and proposals quickly during the
conceptual stage, so that better designs can be generated. By using such tools,
engineers can quickly identify and understand how their design decisions impact and
are impacted by choices made concerning other components in the system. Thus,
rational design decisions will be made during conceptual design, minimizing if not
eliminating the need to address design problems during implementation.

This paper presents a methodology, based on axiomatic design theory, for
constructing a system architecture for complex systems that standardizes the
classification of functions and modules used to represent a system. This is important
for several reasons, including capturing the performance requirements and components
of the system in a logical, coherent, and comprehensive manner, facilitating
communication between engineers and managers on a large design project, and
providing good technical documentation of the design decisions made and the reasoning
behind them. A system architecture is applicable to systems of any size, including
systems that are subsystems of a larger system. Thus, the decomposition of a system
follows the same general pattern and layout at each level of the design hierarchy where
the parent design parameter is a “system” in its own right. Hence, the overall system is
represented in a recursive manner throughout the design hierarchy. This representation
has several advantages, the most significant of which is that the design of individual
subsystems can be generated by different teams of engineers on a large design project,
while the functionality of the overall system as well as the interrelationships between
the different subsystems are thoroughly and consistently represented.
Keywords: System Architecture, Systems Engineering, Design Rationale, Design
History, Axiomatic Design

1. INTRODUCTION

When a system becomes sufficiently complex, the design process must be distributed
among several engineering design teams, each of which are given smaller and more

Hintersteiner, Jason D. (1999) “A Fractal Representation for Systems.” Proceedings of the 1999
International CIRP Design Seminar, Enschede, the Netherlands. March 24-26, 1999. Page 2 (of 10)

manageable tasks to accomplish. These teams are supervised by one or more layers of
management, which have the difficult task of coordinating the activities of the different
teams and providing a bridge of communication as and when necessary.

Typically, each design team will try to optimize its design based on its assigned
tasks and constraints. It is very easy, however, for a designer to be unaware of other
designer’s decisions which will have a negative impact on his/her design. Thus, when
each of the individual designs are put together, it is quite common to discover that the
overall system does not function as intended. This results from the fact that each
individual subsystem design has been locally optimized, without accounting for the
complex interactions between the subsystems. Thus, a change to one portion of the
design can negatively impact other portions unintentionally, because no framework
exists to trace the impact of the design choices between the task divisions.

The main source of difficulty in designing large systems is that, in most cases,
good representations of the design either do not exist or are not used to their full
potential. [Söderman, 1998]. Hence, it is extremely important to have a methodology
to trace the impact of design decisions on both a local level as well as a system level,
since the real goal of the design effort is to optimize the performance of the system,
which does not necessarily mean optimizing the performance of each component.

This issue can be addressed by applying axiomatic design theory to the design of
complex systems. This approach generates a system architecture, which captures the
hierarchical structure of the functional requirements (FRs), design parameters (DPs),
and constraints (Cs) of a system. Using the design axioms, the quality of the design can
be evaluated by means of design matrices, so that potential problems of a particular
design can be detected and addressed during the design process. Axiomatic design is
reviewed briefly in Section 2.

Figure 1: The concept of a fractal representation for systems. Each system is only one
part of a larger system’s hierarchy, but the pattern and layout of the representation for

each system remains consistent.

In this paper, a system is distinguished from a component in the sense that a system
not only consists of process functionality, but requires distinct functionality for
controlling and supporting the processes. Hence, by treating every level of the
hierarchy as a “system” composed of “subsystems”, these types of functional
requirements appear at every hierarchical level. Thus, the system is represented in a

Hintersteiner, Jason D. (1999) “A Fractal Representation for Systems.” Proceedings of the 1999
International CIRP Design Seminar, Enschede, the Netherlands. March 24-26, 1999. Page 3 (of 10)

recursive manner, so that no matter how deep in the hierarchy one looks, the general
pattern and layout of the representation remains consistent. This concept is shown
graphically in Figure 1. Accordingly, a fractal representation emerges of the different
subsystems incorporated into the hierarchy of the overall system, where the details at
each level are unique, but the overall types of functions represented by the FRs and their
interrelationships with the DPs remains consistent. This representation is described in
Section 3, and a case-study example of this technique is discussed in Section 4.

2. BACKGROUND: AXIOMATIC DESIGN

Axiomatic design provides a framework for describing “design objects” which is
consistent for all types of design problems and at all levels of detail. Thus, different
designers can quickly understand the relationships between the intended functions of an
object and the means by which they are achieved. Additionally, the design axioms
provide a rational means for evaluating the quality of proposed designs, and the design
process that is used guides designers to consider alternatives at all levels of detail and to
make choices between these alternatives more explicit.

In axiomatic design terminology, design is defined as the development and
selection of means (DPs) to satisfy objectives (FRs), subject to constraints (Cs). The
main concepts of axiomatic design include: (1) domains, which separate conceptually
the functional and physical parts of the design; (2) hierarchies, which categorize the
progress of a design in the functional and physical domains from a system level to more
detailed levels; (3) zigzagging, which indicates that the decisions made at one level of
the hierarchy affect the problem statements at lower levels; and (4) design axioms,
which dictate that the independence of the FRs must be maintained (Independence
Axiom) and that the information content (i.e. cost, complexity, etc.) must be minimized
(Information Axiom) in order to generate a design of good quality. For a more
thorough explanation of axiomatic design theory, refer to [Suh, 1990] and [Suh, 1999].

3. SYSTEM ARCHITECTURE: APPLICATION TO SYSTEMS

By comprehensively documenting the interrelationships between the FRs, Cs, and DPs
at every level of the design hierarchy, a system architecture can be generated and used
as a tool for decision making. The strength of the system architecture is that, in addition
to the operational flow of the system, it also captures the order in which design
decisions have to be made, and indicates how the alteration of one part of the system
can potentially impact other parts. [Tate, 1999] Here, system design is defined as a
design in which the task of the designers is to integrate several DPs into a whole in
order to satisfy some set of FRs, subject to a given set of constraints. This differs from
other design methodologies in that the process followed is: (a) identify the FRs and their
corresponding constraints, (b) determine possible DPs, and (c) integrate them into a
system. In this case, an understanding of the interrelationships among the different DPs

Hintersteiner, Jason D. (1999) “A Fractal Representation for Systems.” Proceedings of the 1999
International CIRP Design Seminar, Enschede, the Netherlands. March 24-26, 1999. Page 4 (of 10)

is vitally important. By not doing so, the design process becomes a confusing muddle,
which can ultimately lead to several iterations and poor design decisions. In system
design, it is desirable that the same process be useful at all levels of the design; the same
approach may be followed recursively, starting at the system level and continuing until
the design is complete. Thus, the system architecture is useful both when design
concepts are initially generated and evaluated, as in new designs, and when changes are
proposed to existing designs.

3.1. Classification of functions at every hierarchical level
One of the fundamental assumptions in the development of the system architecture is
that the system can be modeled as a series of interacting inputs and outputs. In a general
sense, the input-output transformations in systems can be broken into three functional
categories: process functions, command and control functions, and support and
integration functions.

3.1.1. Process functions
The process subsystems perform the “physical processing” of operands (e.g. a part
being produced, data being evaluated and manipulated, etc), as well as the transport of
operands through the system (e.g. obtaining a part from an external environment and
moving it to different process stages, data transmission from one network node to
another, etc.). For example, in a semiconductor manufacturing machine, the process
subsystems represent the different processing stages through which the wafer passes
within the machine, as well as the robots or other wafer handling mechanisms that
transport wafers between the different processing stages. Within each subsystem, all of
the necessary sensors and actuators, along with the algorithms to control the individual
activities and coordinate them with the other activities in the subsystem, are specified as
part of the functional decomposition. In addition, all of the support structures and
assemblies which bind the subsystem together are also delineated. In a good system
design, process FRs and DPs should either be uncoupled or decoupled from each other.
At the system level, transport DPs are generally decoupled from physical processing
DPs, since the nature of the physical processes usually dictates the nature of the
required transport.

3.1.2. Command and control functions
Command and control algorithms (CCAs) are used to represent the logic necessary to
schedule and coordinate the different process subsystems at each level of the hierarchy.
A CCA will use the instantaneous output of the individual process and transport
operations at that level (i.e., as reported by CCAs lower in the hierarchy) to make
necessary adjustments to ensure that the final operand outputs are as desired (i.e., as
specified by the parent CCA). These algorithms appear at every level of the design
hierarchy where active control is required. They are decoupled from the process
subsystems, since the design of the process DPs dictates which parameters are
monitored and controlled. CCAs at higher levels are primarily responsible for
scheduling and coordination, while CCAs at the lowest levels are primarily responsible

Hintersteiner, Jason D. (1999) “A Fractal Representation for Systems.” Proceedings of the 1999
International CIRP Design Seminar, Enschede, the Netherlands. March 24-26, 1999. Page 5 (of 10)

for coordinating individual outputs to actuators based on information from sensors and
the operators. [Hintersteiner & Tate, 1998]

In many complex systems, the functional requirements of the system change over
time. These types of systems require CCAs that are designed with sufficient flexibility
so that different DPs can be allocated at different times to meet the needs of the
changing FRs. Thus, system command and control is required to allocate different DPs
at different times, as part of the normal operation of the system. The information
provided in the system architecture is useful for understanding the order in which such
DP values should be changed during operation. [Tate, 1999]

3.1.3. Support and integration functions
Each level of the hierarchy requires a support framework for binding the process
subsystems and control logic together into a coherent system. In mechanical systems
such as manufacturing machines, the support framework includes requirements for
environmental control, pneumatic/water lines, electronics assemblies, layout and
configuration, and framing/panel assemblies. In software systems, the support and
integration functionality includes resetting variables and operational states, garbage
collection, and so forth.

3.2. Constraints
Constraints are defined as the set of performance specifications and design restrictions
which impact FRs and therefore limit the acceptable range of possible design solutions
(DPs). Since the system architecture organizes the design in terms of its functionality, it
can be very useful for determining how marketing and management constraints impact
the FRs and restrict the scope of the DPs. The performance specifications provided by
the customer, management, government and industry standards, and safety regulations
are specified as constraints at the system level.

Like FRs and DPs, constraints can be refined and clarified as decomposition
progresses. Many high level constraints also influence the specification of lower-level
FRs. In general, the more constraints that exist at the system level, the harder it will be
to generate an acceptable set of DPs, and therefore the harder it will be to maintain an
uncoupled or decoupled design. By tracing the constraints and refining them as the
design is decomposed, the impact of the high-level constraints on low level
functionality (i.e., child FRs) can be determined. Hence, the way each constraint
impacts each FR must be examined. The impact will, of course, eliminate some
potential DPs. Once a DP is chosen, the constraints are combined and/or refined to
more specific constraints at the child level.

By understanding how constraints impact the FRs and are refined through the
hierarchy, the sources of error in the design that negatively impact the performance of
critical parameters can be determined. Once these sources of errors are identified,
tolerance allocations can be made in the form of an error budget. Research is currently
being undertaken in this area to determine the best method for representing and tracing
constraints through the system architecture. [Hintersteiner, et al., 1999]

Hintersteiner, Jason D. (1999) “A Fractal Representation for Systems.” Proceedings of the 1999
International CIRP Design Seminar, Enschede, the Netherlands. March 24-26, 1999. Page 6 (of 10)

3.3. Evaluation of the design at each level
Table I shows a generic listing of FRs and DPs. The top row indicates the index at this
level, where “#” refers to the index in later rows, and the “ϕ” indicates the full index of
the parent FR/DP.1 The parent FR and DP are included in the table in order to place
the FRs and DPs at this level in context with their parent FR/DP. At the top level, the
parent FR is the mission statement for the overall system, and the parent DP is the
overall system itself. There can be an arbitrary but non-zero number of process FRs at
each level of the hierarchy, depending upon the specific design, and the indices can be
renumbered accordingly. These will always be followed by one control FR and one
support/integration FR.

There may be situations where alternative choices for DPs may exist, such as cases
where a selection must be made between two or more possible design alternatives, and
cases where a particular system platform may utilize different DPs at different times. In
such situations, alternative DPs can be listed as shown in Table I. Each alternative DP
will, in general, have different sets of sub-FRs and constraints, and so a separate
decomposition should be provided for each alternative.

Table I: Generic listing for FRs and DPs (any hierarchical level).

Index: ϕ.# TITLE

Functional Requirements (FRs) Design Parameters (DPs)

Name Description Description Ver

Parent FR Parent DP
1 Process Perform physical process #1 Process subsystem #1 A
2 Process Perform physical process #2 (a) Process subsystem #2 (1st option)

(b) Process subsystem #2 (2nd option)
(c) Process subsystem #2 (3rd option)

In

3 Process Perform physical process #3 Process subsystem #3 De
4 Transport Perform process #4 (transport) Transport subsystem Dr
5 Control Schedule and coordinate all local

process functions
Command and control algorithm (CCA) T

6 Support Integrate subassemblies Support framework U

















































=

























Framework Support
CCA

subsystem Transport
#3 subsystem Process
#2 subsystem Process
#1 subsystem Process

???
??

?

ysubass' Integrate
processes Control

#4 Process Perform
#3 Process Perform
#2 Process Perform
#1 Process Perform

XXXXXX
OXXXXX
OOX
OOOX
OOOOX
OOOOOX

(1)

The last column in the table is used for verification codes, so that the designer can
specify the verification procedure to ensure that the DP is satisfying its corresponding
FR. Verification may be done by several means, including testing (T), inspection (I),

1 e.g. If ϕ = 3.4a.2, the parent FR is FR.3.4a.2, and the FRs in this table are FR.3.4a.2.1, FR.3.4a.2.2, etc.

Hintersteiner, Jason D. (1999) “A Fractal Representation for Systems.” Proceedings of the 1999
International CIRP Design Seminar, Enschede, the Netherlands. March 24-26, 1999. Page 7 (of 10)

demonstration (De), drawings (Dr), analysis and simulation (A), or proven (i.e.,
unchanged) technology (U).

When the list of FRs and DPs is formulated at a particular hierarchical level, a
design matrix is used to correlate how the DPs impact the FRs. An axiomatic design
matrix equation of the form {FR}=[A]{DP}is constructed and the matrix elements
evaluated, as shown in Equation 1.2 Note that the order of FRs in a lower-triangular
matrix generally indicates the order of design importance, since the FR/DP in the top
row should be the first to be decomposed. [Tate, 1999] An explanation should be
provided for each off-diagonal “X” in the design matrix.3 In general, the control and
support FRs will be impacted by the specific design of the process DPs, and hence at
least the last two rows will be decoupled, as shown in Equation 1.4 Coupling can occur
between the process DPs, as well as between the process and control and support DPs,
though this is undesirable as it violates the Independence Axiom.

Given that most large-scale systems evolve from earlier systems when new
constraints emerge, the system architecture enables the designer to determine whether a
proposed change to the design has many downstream side effects. Ideally, a proposed
change should impact only a few, if any, FRs; this occurs when the design is completely
or mostly uncoupled. Typically, however, a design change may impact many other
DPs, which can be very undesirable in terms of monetary costs and development time.
The combination of design matrices and hierarchies can be used to trace proposed
changes throughout the design and understand their effects. This includes choosing
between alternative concepts, guiding the sequence of the design, and developing
options for decoupling coupled parts of an existing design. [Harutunian, et al., 1996]

3.4. Decomposition
As the decomposition progresses, each process DP can be treated as a system in its own
right, with its own sub-process FRs as well as requirements to schedule and coordinate
these process FRs and integrate its own subassemblies. Therefore, the decomposition
follows the same format at every level, and each subsystem has its own CCA and
support framework, which influences the design of the parent level CCA and support
framework. Thus, as the process functions are decomposed top-down, the full system
logic and system support framework is built both top-down and bottom-up, due to the
decoupled nature of the control and support FRs at every level of the hierarchy. In

2 Each element Aij (row i, column j) in the matrix is evaluated by asking, “Can we design (or change the
existing design of) DP.j without impacting how we address FR.i?” [Tate, 1999] In the design matrix, a
“X” signifies a relationship between DP.j and FR.i, and an “O” signifies that no relationship exists. The
diagonal elements (i=j) in [A] should be “X”, since DP.i is chosen to satisfy FR.i.
3 A “?” or “*” is used within the design matrix in cases where the relationship between an FR and a DP is
either variable or unknown. In some instances, a description may also be desirable for an “O”, especially
in cases where the “O” is only valid under certain conditions, or where an “O” appears in an on-diagonal
term, meaning that the DP does not satisfy its corresponding FR.
4 Note, if a particular process subassembly is completely passive and requires no active control, there will
be a zero in the corresponding column for the control FR.

Hintersteiner, Jason D. (1999) “A Fractal Representation for Systems.” Proceedings of the 1999
International CIRP Design Seminar, Enschede, the Netherlands. March 24-26, 1999. Page 8 (of 10)

addition, constraints on these FRs will emerge from parent-level constraints and parent-
level design decisions.

It should be noted that, at sufficiently detailed levels, it may not be appropriate to
consider the decomposition of a design object as a subsystem. For example, the design
of a specific hardware component, such as the geometric specification of a basket at the
end of a movable mechanism, does not qualify as an independent subsystem. Since the
basket itself does not require active control or any form of external support that is not
already specified by the larger subsystem of which it is a part, it is considered to be a
component of the subsystem, and the system representation presented in this paper does
not apply to the decomposition of the component. It is therefore an important job for
the designer to make the distinction between systems and components.

3.5. Documentation of the design
Design documentation is typically performed at the very end of the design project, and
often omits discussion of the reasoning behind design decisions. Accordingly, most
design documentation efforts do not specify what problems were encountered during
the design process, or what steps were taken in order to make the design function
properly. As a result, a future designer only has access to information about the end
product, and thus will know very little about the rationale behind the original decisions.
By generating a system architecture, documentation of the design is generated while the
design is progressing. This can prove to be very advantageous during the design
process, as areas of potential coupling can be detected early on – the system architecture
can be used as a communication tool between different design teams, so that one design
team can avoid making design decisions that will have a negative impact on other
design teams. Furthermore, at the beginning of a redesign effort for a next-generation
product, the system architecture can be reexamined, so that the reasoning behind the
choices of certain DPs along with an understanding of the constraints under which the
designers had worked can be more clearly understood. Where it is appropriate,
photographs, CAD drawings, and/or schematic diagrams showing the assemblies at that
level of the hierarchy can be provided. Such figures should label the name and DP
index number for the subsystems shown, to illustrate better what the DPs in the design
matrix represent and how they interact with other DPs in the system.

4. CURRENT APPLICATIONS

This methodology has been and continues to be applied to several case-study
examples. One good example of this is application of this technique to the current
design of the Micrascan III Photolithography Tool, manufactured by SVG Lithography
Systems, Inc. The system level FRs and DPs are shown in Table II. The first three FRs
show the different processes (i.e. lithography, wafer transport, and reticle transport),
followed by an FR to control the interactions between the processes and an FR to
integrate the processes and control. The corresponding design matrix is shown in
Equation 2. Since this product is the basis of current development platforms, the

Hintersteiner, Jason D. (1999) “A Fractal Representation for Systems.” Proceedings of the 1999
International CIRP Design Seminar, Enschede, the Netherlands. March 24-26, 1999. Page 9 (of 10)

system architecture is currently being used to identify improvement areas in the design,
as well as demonstrate the potential impacts of changing performance requirements (i.e.
constraints) on different parts of the design.

Table II: System level decomposition of the Micrascan III.

Index: # MICRASCAN III PHOTOLITHOGRAPHY TOOL

Functional Requirements (FRs) Design Parameters (DPs)

Name Description Description Ver
Print patterns onto wafers
coated with photoresist

Micrascan III
Photolithography Tool

1 Lithography
Process

Transfer and overlay pattern from
reticle to wafer

Photolithography process system A, T

2 Wafer
Transport

Manipulate wafers Wafer handling system A, T

3 Reticle
Transport

Manipulate reticles Reticle handling system A, T

4 Control Schedule and coordinate all local
process functions

MSIII command and control algorithm
(CCA) De

5 Support Integrate subassemblies MSIII support framework I, T













































=























framework support MSIII
CCA MSIII

System Handling Reticle
System Handling Wafer
Process graphyPhotolitho

ysubass' Integrate
processes Control

Reticles Manipulate
Wafers Manipulate

Pattern Transfer

XXXXX
OXXXX
OOXOX
OOOXX
OOOOX

(2)

Current development work for this methodology includes the following: (1)
incorporation of issues related to physical integration of DPs (i.e. increasing physical
coupling while avoiding functional coupling), (2) development of methods to allow
constraints to be traced coherently and consistently through the system architecture, (3)
expansion of the representation to include a coherent representation for software
systems, and (4) creation of software tools to assist in the generation and maintenance
of system architectures for large systems.

5. CONCLUSIONS

This paper has presented the concept of developing a system architecture, based on
axiomatic design theory, to assist in the design process for new and evolving systems.
By organizing the system design hierarchically in terms of its functionality and applying
the design axioms, the designer is forced to methodically examine the elements of the
design matrices to judge whether or not interrelationships exist. Thus, the system
architecture is a very good tool for documenting design decisions and the reasoning
behind them, and can thus be used to facilitate the evolution of the system by tracing the

Hintersteiner, Jason D. (1999) “A Fractal Representation for Systems.” Proceedings of the 1999
International CIRP Design Seminar, Enschede, the Netherlands. March 24-26, 1999. Page 10 (of 10)

impact of proposed changes. If the designers strictly follow axiomatic design
principles, a design can be created in which functional requirements are satisfied
independently, with minimum information content. In the case of an existing design, a
design that already exists may or may not satisfy the design axioms, but the generation
of a system architecture can reveal potential options for decoupling the design as it
evolves.

For complex systems, this methodology shows how a system and its composite
subsystems can be represented to maintain consistency throughout the design hierarchy.
This representation can then be used to manage and evaluate design changes, determine
the impact of constraints on the set of viable design solutions, create command and
control algorithms for both static systems and systems where FRs change over time, and
facilitate the development of design documentation and the sharing of information
between designers during the design process.

REFERENCES

 [Harutunian, et al., 1996] Harutunian V., Nordlund M., Tate D., Suh N. P., “Decision
Making and Software Tools for Product Development Based on Axiomatic Design
Theory,” Annals of the CIRP, Vol. 45/1, 1996.

 [Hintersteiner & Tate, 1998] Hintersteiner, J. D. and Tate, D. “Command and
Control in Axiomatic Design Theory: Its Role and Placement in the System
Architecture.” Proceedings of the 2nd International Conference on Engineering
Design and Automation, Maui, HI. August 9 – 12, 1998.

 [Hintersteiner, et al., 1999] Hintersteiner, J. D., Tate, D., Friedman, G., and
Zimmerman, R. “Representation of Constraints in the System Architecture.” Work
in progress.

[Söderman, 1998] Söderman, M. “Tools for Creating Understanding and an
Integrated Dialogue in the Early Stages of Product Design.” Proceedings of the 2nd

International Conference on Engineering Design and Automation, Maui, HI.
August 9 – 12, 1998.

[Suh, 1990] Suh, N. P. The Principles of Design. Oxford University Press, NY. 1990.

[Suh, 1999] Suh, N. P. Axiomatic Design: Advances and Applications. Work in
progress.

[Tate, 1999] Tate, D. “A Roadmap for Decomposition: Activities, Theories, and Tools
for System Design.” Ph.D. Thesis, Department of Mechanical Engineering,
Massachusetts Institute of Technology, Cambridge, MA. February, 1999.

